CourseCode MAT- 303 T	P.R.Government College (Autonomous) KAKINADA TITLEOFTHECOURSE Laplace Transforms & Problem Solving Sessions	Program&Semester II B.Sc. Major (III Sem) w.e.f 2025-26 admitted batch			
Teaching	HoursAllocated:60(Theory)	L	Т	P	С
Pre-requisites:	Knowledge of Calculus, specifically integration and differentiation and an understanding of Complex numbers.	3	-	-	3

Course Objectives:

To formalise the study of numbers and functions and to investigate important concepts such as limits and continuity. These concepts underpin calculus and its applications.

Course Outcomes:

On Completion of the course, the students will be able to-			
CO1	Understand the definition and properties of Laplace transformations.		
CO2	Get an idea about first and second shifting theorems and change of scale property.		
CO3	Understand Laplace transforms of standard functions like Bessel, Error function etc		
CO4	Know the reverse transformation of Laplace and properties.		
CO5	Get the knowledge of application of convolution theorem.		

Course with focus on employability/entrepreneurship /Skill Development modules

Skill Development Employability	Entrepreneurship	
----------------------------------	------------------	--

UNIT I

LAPLACE TRANSFORMS – I

Definition of Laplace Transform - Linearity Property - Piecewise Continuous Function - Existence of Laplace Transform - Functions of Exponential order and of Class A.

UNIT II:

LAPLACE TRANSFORMS - II

First Shifting Theorem, Second Shifting Theorem, Change of Scale Property, Laplace transform

of the derivative of f(t), Initial value theorem and Final value theorem.

UNIT III:

LAPLACE TRNASFORM – III

Laplace Transform of Integrals - Multiplication by t, Multiplication by tn - division by t -Laplace transform of Bessel Function - Laplace Transform of Error Function - Laplace transform of Sine and Cosine integrals.

UNIT IV:

INVERSE LAPLACE TRANSFORMS – I

Definition of Inverse Laplace Transform - Linearity Property - First Shifting Theorem - Second Shifting Theorem - Change of Scale property - use of partial fractions - Examples.

UNIT V:

INVERSE LAPLACE TRANSFORMS – II

Inverse Laplace transforms of Derivatives - Inverse Laplace Transforms of Integrals - Multiplication by Powers of 'p' - Division by powers of 'p' - Convolution Definition - Convolution Theorem - proof and Applications - Heaviside's Expansion theorem and its Applications.

Co-Curricular Activities

Seminar/ Quiz/ Assignments/ Applications of Laplace Transforms to Real life Problem / Problem

Solving Sessions.

TEXT BOOK:

LaplaceTransforms by A.R. Vasishtha, Dr.R. K. Gupta, Krishna Prakashan Media Pvt. Ltd., Meerut.

REFERENCE BOOKS:

- 1. Introduction to Applied Mathematics by Gilbert Strang, Cambridge Press
- 2. Laplace and Fouries transforms by Dr.J.K. Goyal and K.P. Guptha, PragathiPrakashan, Meerut.

BLUE PRINT FOR QUESTION PAPER PATTERN SEMESTER-III

Unit	TOPIC	S.A.Q	E.Q	Marks allotted to the Unit
I	LAPLACE TRANSFORMS – I	1	1	15
II	LAPLACE TRANSFORMS – II	2	2	30
III	LAPLACE TRNASFORM – III	2	1	20
IV	INVERSE LAPLACE TRANSFORMS – I	1	1	15
V	INVERSE LAPLACE TRANSFORMS – II	1	1	15
	Total	7	6	95

S.A.Q. = Short answer questions (5 marks)

E.Q = Essay questions (10 marks)

Short answer questions $: 4 \times 5 = 20 \text{ M}$

Essay questions : $3 \times 10 = 30 \text{ M}$

......

Total Marks = 50 M

Pithapur Rajah's Government College (Autonomous), Kakinada II year B.Sc., Degree Examinations - III Semester Mathematics Course VII: LAPLACE TRANSFORMS Model Paper (w.e.f. 2025-26)

.....

Time: 2Hrs Max. Marks: 50

SECTION-A

Answer any three questions selecting atleast one question from each part

Part – A

 $3 \times 10 = 30$

- 1. Essay question from unit I.
- 2. Essay question from unit II.
- 3. Essay question from unit II.

Part - B

- 4. Essay question from unit III.
- 5. Essay question from unit IV.
- 6. Essay question from unit V.

SECTION-B

Answer any four questions

 $4 \times 5 M = 20 M$

- 7. Short answer question from unit -I.
- 8. Short answer question from unit II.
- 9. Short answer question from unit II.
- 10. Short answer question from unit III.
- 11. Short answer question from unit III.
- 12. Short answer question from unit IV.
- 13. Short answer question from unit V

PITHAPUR RAJAH'S GOVERNMENT COLLEGE (A), KAKINADA DEPARTMENT OF MATHEMATICS Question Bank

PAPER-VII: LAPLACE TRANSFORMS

Short answers

Unit - I

- 1. Find the Laplace transform of $(t^2 + 1)^2$
- 2. Find the Laplace transform of $e^{2t} + 4t^3 2 \sin 3t + 3 \cos 3t$
- 3. Find $L\{7e^{2t} + 9e^{-2t} + 5 \cos t + 7t^3 + 5 \sin 3t + 2\}$
- 4. Find the Laplace transform of F(t), where $F(t) = \begin{cases} e^{t-a}, t > a \\ 0, t < a \end{cases}$
- 5. Prove that the function $F(t) = t^2$ is of exponential order 3.

Unit - II

- 6. Find the Laplace transform of $e^{-t}(3 \sin 2t 5 \cosh 2t)$.
- 7. Find $L\{(t+3)^2e^t\}$
- 8. Find $L\{(1 + te^{-t})^3\}$
- 9. Find the Laplace transform of G(t), where $G(t) = \begin{cases} \cos\left(t \frac{\pi}{3}\right), t > \frac{\pi}{3} \\ 0, t < \frac{\pi}{3} \end{cases}$
- 10. Find the Laplace transform of $e^{-3t}u(t-2)$
- 11. State and prove Change of Scale property.
- 12. Apply change of scale property, if $L\{F(t)\} = \frac{p^2-p-1}{(2p+1)^2(p-1)}$
- 13. If $L\{\sin\sqrt{t}\}=\frac{\sqrt{\pi}}{2p^{\frac{3}{2}}}e^{\frac{-1}{4p}}$, find $L\{\frac{\cos\sqrt{t}}{\sqrt{t}}\}$

Unit – III

- 14. Find $L\left\{\int_0^t e^{-t} cost \ dt\right\}$
- 15. Find $L\left\{\int_0^t \int_0^t \cosh au \ du \ du\right\}$
- 16. Evaluate $L\{\sin at at \cos at\}$
- 17. Find $l\{ te^{3t} \sin 2t \}$
- 18. Find the Laplace transform of $\frac{e^{-at}-e^{-bt}}{t}$
- 19. Find the Laplace transform of $\frac{\sin at}{t}$
- 20. Show that $L\left\{\frac{\cosh at}{t}\right\}$ does not exists.
- 21. Prove that $L\{J_1(t)\} = 1 \frac{p}{\sqrt{p^2 + 1}}$

Unit – IV

- 22. State and prove second shifting theorem
- 23. State and prove change of scale property.

24. Find
$$L^{-1} \left\{ \frac{3p-2}{p^{\frac{5}{2}}} - \frac{7}{3p+2} \right\}$$

25. Find
$$L^{-1}\left\{\frac{1}{(p+1)(p-2)}\right\}$$

26. Prove that
$$L^{-1}\left\{\frac{p^2}{(p+2)^3}\right\} = e^{-2t}(1-4t+2t^2)$$

27. Find
$$L^{-1}\left\{\frac{e^{-5p}}{(p-2)^4}\right\}$$

28. If
$$L^{-1}\left\{\frac{p}{(p^2+1)^2}\right\} = \frac{1}{2}t\sin t$$
 find $L^{-1}\left\{\frac{8p}{(4p^2+1)^2}\right\}$

Unit - V

29. Evaluate
$$L^{-1} \left\{ \frac{p}{(p^2 + a^2)^2} \right\}$$

30. Evaluate
$$L^{-1}\left\{\frac{p}{(p^2-a^2)^2}\right\}$$

31. Evaluate
$$L^{-1}\left\{\frac{p}{(p^2-a^2)}\right\}$$

32. Find
$$L^{-1}\left\{\frac{1}{p}\log\left(\frac{p+2}{p+1}\right)\right\}$$

33. Find the inverse Laplace transforms of
$$\frac{1}{p^3(p^2+1)}$$

Essay Questions

UNIT - I

- 1. Find the Laplace transform of F(t) = |t-1| + |t+1|, $t \square 0$.
- 2. Find the Laplace Transform of $(\sin t \cos t)^3$.
- 3. Obtain the Laplace transform the function $F(t) = \begin{cases} (t-1)^2, t > 1 \\ 0, 0 < t < 1 \end{cases}$

4. Find the Laplace Transform of
$$F(t) = \begin{cases} 0, & t > \pi \\ \sin t, & 0 < t < \pi \end{cases}$$

5. Using the expansion
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
, show that $L(\sin \sqrt{t}) = \frac{\sqrt{\pi}}{2p^{\frac{3}{2}}} e^{\frac{-1}{4p}}$

UNIT - II

- 6. State and prove First Shifting theorem.
- 7. State and prove Second Shifting theorem.
- 8. Find $L\{\sinh at \cos at\}$
- 9. Prove that L{ $F^{(n)}(t)$ } = $p^n f(p) p^{n-1}F(0) p^{n-2}F^1(0) ... F^{(n-1)}(0)$.
- 10. State and prove Initial Value theorem.

11. State and prove Final value theorem.

12. Show that
$$L\{t \sin at\} = \left\{\frac{2ap}{(p^2+a^2)^2}\right\}$$
 and $L\{t \cos at\} = \left\{\frac{p^2-a^2}{(p^2+a^2)^2}\right\}$

13. If
$$L\{t \sin at\} = \left\{\frac{2ap}{(p^2+a^2)^2}\right\}$$
, then prove that $L\{\sin at + at \cos at\} = \left\{\frac{2ap}{(p^2+a^2)^2}\right\}$

UNIT - III

14. Find $L\{(t^2 - 3t + 2) \sin 3t\}$

15. Find
$$L\left\{\frac{\cos 2t - \cos 3t}{t}\right\}$$

16. Using Laplace transform, evaluate
$$\int_0^\infty \frac{\cos at - \cos bt}{t} dt$$

17. Find
$$L\{erf\sqrt{t}\}$$
 and hence prove that $L\{t \ erf(2\sqrt{t})\} = \frac{3p+8}{p^2(p+4)^{\frac{3}{2}}}$

18. Prove that
$$L\{J_0(t)\} = \frac{1}{\sqrt{p^2+1}}$$

- 19. Find the Laplace transform of $S_i(t)$.
- 20. Find the Laplace transform of C_i(t).

UNIT - IV

21. Find
$$L^{-1}\left\{\frac{3}{p^2-3} - \frac{3p+2}{p^3} - \frac{3p-27}{p^2+9} + \frac{6-30\sqrt{p}}{p^4}\right\}$$

22. Find
$$L^{-1}\left\{\frac{3p+1}{(p-1)(p^2+1)}\right\}$$

23. Find the inverse Laplace transform of
$$\left\{\frac{4p+5}{(p-1)^2(p+2)}\right\}$$

24. Find
$$L^{-1}\left\{\frac{e^{-\pi p}(p+1)}{p^2+p+1}\right\}$$

25. For a
$$\Box$$
 0, prove that $L^{-1}{f(p)} = F(t)$ implies that $L^{-1}{f(ap+b)} = \frac{1}{a}e^{\frac{-bt}{a}}F\left(\frac{t}{a}\right)$

UNIT - IV

26. Find
$$L^{-1}\left\{\frac{p-3}{p^2+4p+13}\right\}$$

27. Using Convolution theorem, find
$$L^{-1}\left\{\frac{p}{(p^2+a^2)^2}\right\}$$

28. Using Convolution theorem, find
$$L^{-1}\left\{\frac{p+1}{(p^2+2p+2)^2}\right\}$$

29. Apply Heaviside's expansion formula to find
$$L^{-1}\left\{\frac{6p^2+22p+18}{p^3+6p^2+11p+6}\right\}$$

30. Using Heaviside's expansion formula, find
$$L^{-1}\left\{\frac{3p+1}{(p-1)(p^2+1)}\right\}$$

Estd. 1884	P.R.Government College (Autonomous) KAKINADA	Program&Semester II B.Sc. Major (III Sem) w.e.f 2025-26 admitted batch			
CourseCode	TITLEOFTHECOURSE			itted	
MAT- 303 P	Laplace Transforms & Problem				
	Solving Sessions				
Teaching	HoursAllocated:30(Practical)	L	Т	P	С
Pre-requisites:	Knowledge of Calculus, specifically integration and differentiation and an understanding of Complex numbers.	1	-	2	1

UNIT I

LAPLACE TRANSFORMS - I

Definition of Laplace Transform - Linearity Property - Piecewise Continuous Function - Existence of Laplace Transform - Functions of Exponential order and of Class A.

UNIT II:

LAPLACE TRANSFORMS - II

First Shifting Theorem, Second Shifting Theorem, Change of Scale Property, Laplace transform of the derivative of f(t), Initial value theorem and Final value theorem.

UNIT III:

LAPLACE TRNASFORM - III

UNIT IV:

INVERSE LAPLACE TRANSFORMS - I

Definition of Inverse Laplace Transform - Linearity Property - First Shifting Theorem - Second Shifting Theorem - Change of Scale property - use of partial fractions - Examples.

UNIT V:

INVERSE LAPLACE TRANSFORMS – II

Inverse Laplace transforms of Derivatives - Inverse Laplace Transforms of Integrals - Multiplication by Powers of 'p' - Division by powers of 'p' - Convolution Definition - Convolution Theorem - proof and Applications - Heaviside's Expansion theorem and its Applications.

TEXT BOOK:

LaplaceTransforms by A.R.Vasishtha,Dr.R.K.Gupta,KrishnaPrakashanMedia Pvt.Ltd., Meerut. **REFERENCE BOOKS:**

- 1. Introduction to Applied Mathematics by Gilbert Strang, Cambridge Press
- 2. Laplace and Fouries transforms by Dr.J.K. Goyal and K.P. Guptha, PragathiPrakashan, Meerut.

Semester – III End Practical Examinations Scheme of Valuation for Practical's

Time: 2 Hours Max.Marks: 50

Record - 10 Marks
 Viva voce - 10 Marks
 Test - 30 Marks

➤ Answer any 5questions. At least 2 questions from each section. Each question carries 6 marks.

BLUE PRINT FOR PRACTICAL PAPER PATTERN COURSE-VII - LAPLACE TRANSFORMS

Unit	ТОРІС	E.Q	Marks allotted to the Unit
I	LAPLACE TRANSFORMS – I	2	12
II	LAPLACE TRANSFORMS – II	2	12
III	LAPLACE TRNASFORM – III	1	06
IV	INVERSE LAPLACE TRANSFORMS – I	2	12
V	INVERSE LAPLACE TRANSFORMS – II	1	06
	Total	08	48

PITHAPUR GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA

II year B.Sc., Degree Examinations - III Semester Mathematics Course-VII: LAPLACE TRANSFORMS

(w.e.f. 2024-25 Admitted Batch) Practical Model Paper (w.e.f. 2025-2026)

.....

Time: 2Hrs Max. Marks: 50M

Answer any 5questions. At least 2 questions from each section. SECTION - A

 $5 \times 6 = 30 \text{ Marks}$

- 1. Unit I.
- 2. Unit I.
- 3. Unit II.
- 4. Unit II.

SECTION - B

- 5. Unit III.
- 6. Unit IV.
- 7. Unit IV.
- 8. Unit V.
 - > Record 10 Marks
 - ➤ Viva voce 10 Marks